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I. It is well known that new and unsafe instabilities associated with 

the so called drift oscillations (see, e.g., [i, 2]) appearin a nonuniform 

plasma. The properties of these instabilities have been fairly thoroughly 

studied for the case in which the initial plasma irregularity is one dimen- 

sional. However, inrealconditions it is not always possible to reduce 

the problem to a one-dimensional case. By way of anexampleweshall 

consider a situation typical for the so called drift-thermal instabilities 

(see, e.g., [3, 4]). These instabilities often develop when there is a spe- 

cific relation between the initial gradients of density n o and tempera- 

ture To. At the present time the most unstable of these is taken to be 
[3] the instability which develops for d lg T o/d lg no > 2 in the fre- 
quency region to < kzVTi; here vri is the ion thermal velocity, k z is 
the wave vector component in the direction of the magnetic field H0. 

Its instability is connected with the fact that the anomalous particle 
diffusion brought about by a developing unstable configuration remains 
large even in devices which produce a stabilizing factor such as crossed 
lines of force in the magnetic field [5]. 

In paper [5] mention was made of the difficulty of creating experi- 
mental conditions so as to avoid the unstable range of temperature and 
density gradients since the total particle flux to the wall of the device 
is less than the thermal flux. Naturally these conditions can only de- 
teriorate if for some reason the unstable region of gradients should in- 
crease. 

It turns out that a possible noncollinearity of the temperatnse and 
demity gradients may ldad to a broadening of the instability region. 
This possibility may be confirmed on a series of counts. Firstly, no 
real devices have such a high degree of symmetry that the density and 
temperature gradients are only radial. Then it does not by any means 
follow from the general conditions for equilibrium that Vn 0 and VT 0 
will necessarily be collinear. 

Secondly, additional particle and heat fluxes may arise during the 
operation of the device and these may dissipate across the field only 

with difficulty since the plasma is magnetized. 
Finally, peculiarities in the construction even of symmetrical de- 

vices may lead to the appearance not only of radial but also of azi- 

muthal gradients. The stellarator is an example of this. 
The figure gives a cross section of a stellarator perpendicular to 

the lines of force of I-I 0. Since the lines of force are the surface of a 
toms in the first approximation, then because of their curvature the ef- 
fective force of gravity is in a certain direction and makes a varying 
angle with the radial density gradient.* On the other hand gravity also 
has a component in the azimuthal direction, and it then follows from 
the conditions for equilibrium that there should be an azimuthal den- 
sity gradient. We note that the initial nonuniformity now takes on a 
marked two-dimensional character 

2. In deriving the dispersion equation we will allow for the depend- 
ence of density and temperature on the coordinates x, y, i . e . ,  n0(x,y), 
T0(x, y). The two dimensional character of the initial nonuniformity 
leads to a change in the drift frequencies. Actually if we set n 0 = 

= n0(x, y), T O = c0nst, then the equations* describing the drift wave 
take the following form for perturbations of the order exp ( - i~ t  § 
+ ikr): 

tg~ Ono E~ ano 

- -  ikznTo - -  enoE z = 0. (2,1) 

Equations (2.1) describe the electron equilibrium along the lines of 
magnetic field H a and the conservation of particles. Here n is the per- 
turbed density, c is the velocity of light, Ex, y, z are the electric field 
components. From (2.1) we have 

cTo [ ano . Ono\ 
(2.2) 

For the initial equation describing charge motion in the general 
case we shall take the kinetic equation for a perturbed correction to 
the distribution function without a collision integral: 

o-T+(vv) /J+~nJLv•  Ov / - 0 .  (2.3) 

Here WHj is the Larmor frequency of j-type particles. 
The equilibrium distribution function f~ should satisfy the equation 

Ho ] a/jo 
(vv.)/~Q + COnj iv • H~-0J - ~ -  = 0. (2.4) 

The solution of the equation will be an arbitrary function of the in- 

tegrals of motion given by the equations 

[ H0] dr dv v X H00 (2.5) d~- = v, - ~  = ~OHi 

The first integrals of this system are 

X I Yy ~ 1)2C , (To. j )  

Here ~ is the energy. It is natural to choose the distribution function 
of the unperturbed plasma in the form 

0 I vx \ O 1  

exp (_ w )  (26) 

We note that previously only distribution functions were treated 
which depended on e and (x + Vy/WHj ). The solution of Eq. (2.3) has 
the form 

t 

ej I (E0/jo ~ 
] ~ - -  n~ --oo Ov /dr .  (2.7) 

Here the integral is taken over the unperturbed trajectories of 
j-type particles specified by Eqs. (2.5). 

*R. Z. Sagdeev pointed out that this transverse corrugation exists 
naturally in the stellarator. 

*Here and in what follows it is assumed that the initial parameters 
change slowly enough for me quasi-classical approximation to be ap- 
plicable [6]. 
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The dispersion equation n e ~ n i (nj is the perturbed density of 
j - type pattiele~) takes the form 

! ]edS~ i ]tdZ~, (2.8) 

Omitting the tntetmedfate calculations, similar to those of [3] for 
example, we give only the final form of Eq. (2.8): 

• exp ( = mJ~L~ ~ mJel " (2.9) 

When w << WHj it suffices to retain only the term with I = 0 in the 
sum over I, allowing for the fact that 

kLV~'7 ~i 

here I0 is a Bessel function of imaginary argument,  VTj is the thermal 
velocity of the particles. Then Eq. (2,9) may be rewritten in the fol- 
lowing form: 

%co i V'R' (1 2 e 

t -k 5)] A ~ O, x [~ -- % + ~- % (i 

C 

~i, 

i o~i\ r i  i t (%o~) : i  

In Eq. (2.10) the contribution from electron currents is neglected, 
which is legi t imate for kJ_VTj /WHj << l ,  and allowance is made for the 
fact that w < kzVTi. Solving Eq. (2.10) we find 

%2 
Im a) = - -  ikzV r~ < - - ~  ff-~ 4- ] / ~  ~ • 

• 

x {-~- - I_ <~ %s 

• + , 

t k aTo aTo 
- s ,  

~ = - ~ o  \ ~ a z -  = Oy I '  (2.1D 

In accordance with (2.10) the  condition for instability Imw > O as- 
sumes the form 

It follows from this inequality that if Vn 0 and VT 0 are not colIinear, 
then the instability region is broadened considerably compared with the 
region indicated in paper [3]. The instability region now includes the 
case when 0To/0x and 0n0/ax have different signs; if 0T0/~y = 0, then 
instability is possible for 

_ 0 lg To lax  
OlgnolOx ~ l "  

Here k x >> ky if 0n0/0y << 0n0/0x. It is necessary to bear in mind, 
however, that the min imum value of ~5 which may yet  be attained must 
not violate the condition wi~kzVTi  , since 

Re ~o ~ kzVri / o) i < zvri .  

It should be noted that noncollinearity of VT 0 and Vn 0 leads to a 
change of the instability region in a series of other cases. It is not hard 
to see, for example, that the instability region broadens [3] when the 
thermal  conductivity along the lines of force of H 0 is allowed for; the 
boundary of the region is shifted substantially in the direction of posi- 

t ive ~. 
In fact it follows from the considerations adduced above that the 

criterion for the development of drif t- temperature instabilities may be 
written in the form of a relation between w i, as determined from for- 
mula (2.2) and the quantity WT determined in a similar manner: 

c . OTo OTo \ 
(2.13) 

The criterion for development of the instability associated with 
allowing for the thermal  conductivity along H 0 may then be written in 

the form 

O) r / o i < 0. (2.14) 

in the  case in which VT 0 and Vn0are collinear we have the criterion 
[3] d lgT0/d lg  no < 0. In the contrary case we have 

(k OTo/Ox - -  k x OT o I Oy) 
k v 0% / Ox < O. 

(2.15) 

For simplicity expression (2.15) has been written for the case 
0n0/ay = O. The assertion made above follows from this. 
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